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Abstract 
 

In this paper, we study the joint radio and computational resource allocation in the ultra-dense 
mobile-edge computing networks. In which, the scenario which including both computation 
offloading and communication service is discussed. That is, some mobile users ask for 
computation offloading, while the others ask for communication with the minimum 
communication rate requirements. We formulate the problem as a joint channel assignment, 
power control and computational resource allocation to minimize the offloading cost of 
computing offloading, with the precondition that the transmission rate of communication 
nodes are satisfied. Since the formulated problem is a mixed-integer nonlinear programming 
(MINLP), which is NP-hard. By leveraging the particular mathematical structure of the 
problem, i.e., the computational resource allocation variable is independent with other 
variables in the objective function and constraints, and then the original problem is 
decomposed into a computational resource allocation subproblem and a joint channel 
assignment and power allocation subproblem. Since the former is a convex programming, the 
KKT (Karush–Kuhn–Tucker) conditions can be used to find the closed optimal solution. For 
the latter, which is still NP-hard, is further decomposed into two subproblems, i.e., the power 
allocation and the channel assignment, to optimize alternatively. Finally, two heuristic 
algorithms are proposed, i.e., the Co-channel Equal Power allocation algorithm (CEP) and the 
Enhanced CEP (ECEP) algorithm to obtain the suboptimal solutions. Numerical results are 
presented at last to verify the performance of the proposed algorithms. 
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1. Introduction 

As a key technology of the fifth generation (5G), mobile edge computing (MEC) has 
received intensive attentions recently [1, 2]. Its core idea is to provide IT and cloud computing 
capabilities within the wireless access network [2]. Based on MEC, mobile devices can offload 
computation-intensive applications such as video transcoding [3], AR/VR image rendering [1], 
to the MEC server to reduce the energy consumption of the mobile devices. In addition, MEC 
can reduce the dependence on remote cloud for the large-scale deployed IoT applications [4]. 
Despite with many advantages, the computation and communication are inter-coupled in the 
MEC system, and thus the perceived performance of the users (such as the latency and energy 
consumption, etc.) depends on the joint allocation of computational and communication 
resources. Therefore, with the available resource and predefined user requirements, how to 
optimize the resource allocation to maximize the performance is critical and open problem for 
the MEC networks. 

Currently, many researchers have discussed the resource allocation problem for the MEC 
networks under different task models and scenarios. From the perspective of offloading task 
model, these studies can be classified into two categories, i.e., the binary offloading task and 
the partial offloading task [1]. For binary offloading task, the mobile device can perform it 
locally or wholly offload to a MEC server. In such case, the focus of resource allocation is 
offloading decision [5-10], including whether to offload and how to offload. For partial 
offloading task, we can segment the task to at least two parts, and each part can be locally 
performed, or offloaded to the MEC server. Then in such case, the focus is the computation 
distribution between mobile devices and the MEC, and resources allocation among multiple 
users or multiple tasks [11-14, 16]. 

From the perspective of the system scenarios, different system models have been discussed 
yet, i.e., from single-user [5, 6, 10, 12, 13], multi-users [6, 9, 11, 14, 16-20], to D2D [15] and 
heterogeneous MEC networks [16] et al. In a single-user single-task MEC system, since the 
computation demand is much smaller than the computation capacity of the MEC server. 
Therefore, the execution delay of the task on the MEC server is generally negligible. In such 
circumstance, the studies focus on the radio resource allocation to improve user perceived 
performance defined as the weighted sum of delay and energy consumption, such as the 
optimization of uplink transmission rate [5], uplink transmission time [6], and transmission 
power [12]. For multi-users scenario, there is a resource competition among these users and 
how does these users access the radio and computation resource will affect their perceived 
performance. For the radio resource, orthogonal access schemes such as TDMA [11], 
OFDMA [8, 11, 16, 17], and non-orthogonal access mechanisms such as CDMA [18, 19], and 
NOMA [20], are the candidates. For the computation resource, depending on the number of 
available virtual machines (VMs) at the MEC servers, multi-users or multi-tasks can access to 
computational resources in serial [21, 22] or parallel [8-20, 23]. The research has also 
extended to the D2D network with inter-user collaboration [15] and heterogeneous MEC 
networks [16]. In addition, the system performance criteria used in the existing MEC networks 
includes offloading delay [12, 23], energy consumption [11, 12, 14, 17] and the delay-energy 
tradeoff [9, 10, 18, 19]. 

Different from the existing research, we study the joint resource allocation for the 
ultra-dense MEC networks with two different service demands at the mobile users. On the one 
hand, as the key network technology of 5G, ultra-dense networks are deployed through small 



3136                                                                                  Liu et al.: Joint wireless and computational resource allocation 
for ultra-dense mobile-edge computing networks  

cells to realize spatial multiplexing of radio resource [24], thereby achieving a 10~1000-fold 
increase in user rates. Now, the ultra-dense network is widely studied in the field such as 
industrial and medical [24]. In an ultra-dense MEC network, dense deployment of cells will 
bring serious co-channel interference, which makes the radio resource allocation coupled over 
these users and we should perform a joint channel allocation and power control [24-26]. In 
addition, the competition for computing resource among multiple users from multiple cells 
will further complicate the resource allocation problem. However, less work has done for the 
resource allocation of the ultra-dense MEC networks [26]. On the other hand, in 5G and future 
mobile networks, the supported type of services will become more abundant, including both 
computing service and communication, such as AR/VR, online games. However, most 
existing researches on MEC networks only consider a single service type, i.e., computing 
service [4-15, 17- 23]. Thus, the hybrid service scenario should be considered [27], and the 
resulted QoS requirements for multiple services will complicate the resource allocation 
problem [16]. Therefore, this paper studies the resource allocation problem for ultra-dense 
MEC networks. In which, orthogonal frequency division multiplexing access (OFDMA) is 
adopted by the ultra-dense cells, and the users in the system asking for computation or 
communication service. While the users asking for communication service have the minimum 
communication rate requirements, and the computing offloading users aim at minimizing the 
weighted sum of delay and power consumption. We model and analyze the problem of joint 
channel assignment, power control, and computational resource allocation in this scenario. 
Since the problem is NP-hard, two heuristic algorithms are proposed to obtain the suboptimal 
solutions. Specifically, our contributions are as follows. 
1) We study the joint resource allocation problem for an OFDMA-based ultra-dense MEC 

network with hybrid traffic demands. In which, the communication users have minimum 
transmission rate constraints, and the computing users aim at minimizing the tradeoff of 
delay and energy. As far as we known that, only the literature [16] has studied the scenario 
with hybrid service demands. However, the focus of [16] is the precoding at the mobile 
users. In this paper, we focus on the joint channel assignment, power control and the 
computational resource allocation.  

2) Since the formulated joint resource allocation problem is a mixed-integer non-linear 
programming (MINLP), which proved to be NP-hard and is difficult to solve. Thus, based 
on the structural features of the original problem, it is decomposed to two subproblems, 
i.e., computation resource allocation, and a joint subchannel assignment and power 
control. The former is a convex problem, thus we can obtain a closed-form solution by 
using the KKT conditions. For the latter, since the subproblem is still a MINLP, two 
heuristic algorithms to achieve sub-optimal solution are proposed, i.e., CEP and ECEP. 
Meanwhile, the computation complexity of the proposed algorithms are analyzed. 

3) The performance of the proposed algorithms is analyzed at last. We analyze how the 
weight sum of offloading cost is varying with the user density, task complexity, or 
delay-energy consumption weight. The results explicitly verify that the ECEP 
outperforms CEP on the offloading cost performance. 

The remainder of this paper is organized as follows. Section II introduces the system and 
formulates the resource allocation problem. Section III discusses and solves the formulated 
resource allocation problem by proposing two suboptimal algorithms, i.e., CEP and ECEP. 
Simulation results are presented in Section IV and we conclude the paper at last. 
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2. System Model 

2.1 Scenario model 
Network model: We consider a network composed of M  cells and N  mobile users (MUs), 
as shown in Fig. 1. The MUs cloud be phones or IoT based sensors. The base stations (BS) 
over these cells share the same spectrum and access to a common MEC server through the 
wired backhaul link. Both the MUs and BSs are equipped with single antenna. Herein, the 
orthogonal frequency division multiplexing access (OFDMA) is adopted by these BSs, i.e., the 
MUs in the same cell are allocated with orthogonal subchannels and the MUs associated with 
different BSs may work on the same subchannel and interfere against each other.  

 

...

...

 
Fig. 1. Ultra-dense mobile-edge computing networks 

 
According to the traffic demands of these MUs, the MUs can be divided into two subsets: 

the computation offloading MUs 
off

 and the communication MUs c
 . All the MUs in 

off
  

have computation-intensive tasks to be processed. Due to the limited computing capability or 
battery capacity on these MUs, their tasks must be offloaded to the MEC server to implement 

[8, 16]. While MUs in c
  just ask for network access but with the minimum transmission rate 

requirements. Define = off c   , then all MUs in the network compete for wireless 
communication resources, but only MUs in 

off
  compete for computational resources. In this 

paper, we discuss the problem of joint subchannel assignment, power control and computation 
resource allocation so that all MUs in 

off
  can minimize their offloading costs and the 

transmission rate requirements of the MUs in c
  are satisfied.  

Task model: For MU offn∈ , its offloading task is characterized by ( )n n
in n out

A L X L, ,  [29], 

where n
in

L  and n
out

L  denote the number of data bits for input and output of its task, respectively, 

and n
X denotes the computation complexity of this offloading task.  

For the computing offloading MUs, we use the weighted sum of the offloading delay and 
energy consumption to characterize its offloading performance. However, as [19],  the delay 
caused by task offloading transmission delay from BS to MEC server, and the results feedback 
from MEC server to the MUs are ignored. In addition, the energy consumption for results 
feedback from BS to MUs, i.e., the energy consumption for signal receiving at the MUs, is also 
not considered herein. Following these assumptions, we take MU n  allocated with the 
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subchannel k  in the m th cell as an example to illustrate the communication, computation and 
offloading model. 

Communication model: As aforementioned, OFDMA is adopted by the BS. Specifically, 
each BS divides the bandwidth B

0
[Hz]  equally intoK subchannels with bandwidth B [30], 

i.e.B B K
0

= , and the subchannels set is K {1,2,..., }= . In order to ensure the orthogonally 
of the uplink transmission of MUs in the same cell, the subchannels are exclusively assigned to 
MUs. Define subchannel assignment variable as  

( ), , ,nx m,k n m k∀ ∈ ∈ ∈                                             (1) 
Where n

x m,k( ) 1=  indicates that MU n is assigned the nth subchannel in the mth cell, 

otherwise n
x m,k( ) 0= . 

We define subchannel assignment decision as 
       { }= ( ) ( ) 1, , ,n nx m,k x m,k n m k= ∀ ∈ ∈ ∈                        (2) 

In order to ensure that all MUs’ are serviced, the following constraints of the subchannel 
assignment must be satisfied: 

( ) 1,n
m k

x m,k n
∈ ∈

= ∀ ∈∑ ∑
 

 .                                            (3) 

Let max(0, ],np p n∈ ∈  denote the transmit power of MU. max
p  is the maximal allowable 

transmission power for all MUs. Thus the signal to interference plus noise ratio (SINR) of the 
received signal at its associated BS is 

, ,
, , 2

n n m k
n m k k

m

p
I

h
γ

σ
=

+
.                                                             (4) 

Where 
m n k

h
, ,

 denotes the uplink channel gain between BS m and MU n, and we assume it 
keeps unchanged during a resource allocation period, i.e., the channel is a quasi-static channel. 
And ( ) , ,

1,r 1
,

M N
k m
m n n n r k

r m n
I x r k p h

= ≠ =

= ∑ ∑  denotes inter-cell interference from co-channel users in other 

cells. The power of additive white Gaussian noise (AWGN) is denoted by 2σ . Therefore, the 
transmission rate of MU n is 

2 , ,log (1 )n m n kR B g= +                                                      (5) 
In addition, all MUs in c  have the same transmission rate constraint minR , i.e.,  

min ,n cR R n≥ ∀ ∈                                                       (6) 
As mentioned above, the number of offloading task input bits for MU n is n

in
L , then the 

offloading transmission delay for MUn is 
, ,

n
n m inoff

n off
m n

x L
T n

R∈

= ∀ ∈∑


 .                                                 (7) 

Where ( ), = , , ,n m n off
k

x x m k n m
∈

∀ ∈ ∈∑


  . Given the transmit power ,n offp n∈ , the energy 

consumption of the task offloading for MU n is 
off

n n nE T p= .                                                                    (8) 
Computation model: We assume that the MEC server allocates the orthogonal computing 

resource over multiple accessed MUs by virtualization [1]. Define s
F  as the maximum CPU 
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frequency of the MEC server, and n
f  denotes the CPU frequency allocated to MU offn∈ , 

which satisfies 0,n offf n> ∀ ∈ , 0,n offf n= ∀ ∉ . Then, the computational resource allocation 
decision is denoted by { | }n offf n= ∈  , thus we have  

off

n s
n

f F
∈

≤∑


                                                           (9) 

Given the computational resource n
f , the execution delay of the MU n ’s task is 

= ,
n

exe in n
n off

n

L X
T n

f
∀ ∈                                                    (10) 

Offloading cost: Given the subchannel assignment , transmit power { },np n= ∈   and 

the computational resource n
f , the total offloading delay of MU n is 

, ,
n n

n m inoff exe in n
n n n off

m n n

x L L X
T T T n

R f∈

= + = + ∀ ∈∑


                                   (11) 

Therefore, the offloading cost for offloading MUs which is characterized by the weighted 
sum of offloading delay and energy consumption, is 

,n t n e n offJ T E nγ γ= + ∀ ∈ .                                                      (12) 
Where , [0,1]t eγ γ ∈  and + 1,t e offnγ γ = ∀ ∈ , tγ  and eγ  together characterize the MUs’ 

preference over offloading delay and energy consumption, respectively. 
 

2.2 Joint resource allocation problem 
As mentioned earlier, for our considered system, we discuss the joint subchannel assignment, 
power control and computational resource allocation with the objective of minimizing the 
weight sum of offloading cost for all offloading MUs,  

( ), ,
off

n n
n

J a J
∈

= ∑


                                                        (13) 

In which, nJ  is defined in (12) and 0,n offa n> ∈  denotes system’s preference for MUs. To 
sum up, we have the following constrained optimization problem,  

( )

{ }
, ,

max

min

min , ,

. . 1: ( ) 0,1 , , , .

2 : ( ) 1, .

3 : ( ) 1, , .

4 : 0 , .
5 : , .
6 : 0, .

7 : .
off

n

n
m k

n
n

n

n c

n off

n
n

J

s t C x m,k n m k

C x m,k n

C x m,k m k

C p p n
C R R n
C f n

C f F

∈ ∈

∈

∈

∈ ∀ ∈ ∈ ∈

= ∀ ∈

≤ ∀ ∈ ∈

< ≤ ∈

≥ ∀ ∈

> ∀ ∈

≤

∑ ∑

∑

∑

<  

 

C

C

<  

C  

C

 

C
C

C

                       OR  

In which, C1 and C2 together indicates that each MU should be and at most be assigned with 
one subchannel. C3 means that each subchannel is exclusively assigned to only one MU. C4 
defines the transmission power constraint for the MUs. C5 defines the minimum transmission 
rate constraint for the communication MUs. C6 promises that each offloading MU will be 
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allocated the computational resource. C7 restricts the available computational resources. 
Obviously, problem OR  is a mixed integer non-linear programming (MINLP) [28], thus it is 
NP-hard. Therefore, the suboptimal polynomial complexity algorithms are proposed below. 

3. Joint sub-channel assignment and resource allocation algorithm 
Since problem OR  involves optimization of both integer variables (subchannel assignment) 
and continuous variables (power control and computational resource allocation). In addition, 
the objective function and constraint C5 are both non-convex. Therefore, it is NP-hard and 
difficult to solve it directly. In spite of this, we note that, for problem OR ,  the computational 
resource allocation is independent with the power control and channel allocation. With this in 
mind, the original problem OR  is decomposed into two subproblems, i.e., the computation 
resource allocation, and the joint subchannel assignment and power control. The first one is a 
convex optimization problem, which can be solved by interior point method [28]. However, 
the second subproblem is still NP-hard. In order to solve this problem and propose low 
complexity algorithm, it is further decomposed into two subproblems, i.e., channel assignment 
problem and the power control problem. Finally, an iteration based optimization is proposed to 
completely solve the joint optimization problem. 

3.1 Problem decomposition 
Firstly, for problem OR , we have the following proposition. 

Proposition 1: Problem OR  can be decomposed into two independent subproblems CP  
and JP as presented below. In which, the former only involves computational resource 
allocation and the latter is the joint channel assignment and power control. 

Proof: For the objective function of OR , we have 
( ) ( )

, ,

, ,

, ,
off

off

off off

n t n e n
n

n nn
n m in n m inin n

n t e n
n m mn n n

n nn
n m in n m inn t in n

n t e n
n n m mn n n

J a T E

x L x LL X
a p

R f R

x L x La L X
a p

f R R

γ γ

γ γ

γ
γ γ

∈

∈ ∈ ∈

∈ ∈ ∈ ∈

= +

  
= + +      

  
= + +      

∑

∑ ∑ ∑

∑ ∑ ∑ ∑



  

   

 E 

 

Wherein, the first part involves computation resource allocation, and the second part is 
about joint subchannel assignment and power control. In addition, for problem OR , C6 and C7 
are the constraints for the computational resource allocation, and C1 to C5 are the constraints 
for the joint subchannel assignment and power control. Therefore, the problem can be 
decomposed into the following two subproblems, i.e., the computation resource allocation 
problem CP , and the joint channel allocation and power control problem JP , 

( )1min ,...,

. . 6 7.

off
off

n
n t in n

f
n n

a L X
J f f

f

s t C C

γ
∈

=

−

∑C
C                                               CP  

, ,
,,

min

. . 1 5.
off

n n
n m in n m in

x p n t e n
n m mn n

x L x L
J a p

R R

s t C C

γ γ
∈ ∈ ∈

  
= +      
−

∑ ∑ ∑ 
C                         JP  

Therefore, we have the conclusion.                                                                   
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Based on Proposition 1, the computational resource allocation subproblem and the joint 
channel assignment and power control subproblem will be separately discussed below. 

 

3.2. Computational resource allocation 
Lemma 1: The objective function of CP  is a convex function. 
Proof: In order to get this conclusion, we have to prove that the Hession matrix of the 

objective function is a positive definite matrix [28]. Since the Hession matrix of the objective 
function is 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2 2
1 1 1

2
1 2 11

2 2 2
1 1 1

2
2 1 22

2 2 2
1 1 1

1 2

,..., ,..., ,...,

,..., ,..., ,...,

,..., ,..., ,

off off off

off

off off off

off

off off

off off

f f f

f f f

f f f

J f f J f f J f f

f f f ff

J f f J f f J f f

f f f ff

J f f J f f J f

f f f f

∂ ∂ ∂

∂ ∂ ∂ ∂∂

∂ ∂ ∂

= ∂ ∂ ∂ ∂∂

∂ ∂ ∂

∂ ∂ ∂ ∂

H





   



  



  



 

 

( )
2

...,
off

off

f

f

 
 
 
 
 
 
 
 
 
 
 
 
 
 ∂
 





 

Wherein, 

( ) 22
1

3
2 2

,...,
2 ,off

n
n t in n

f
nn

n t in n n off
n n

a L X
J f f f

a L X f n
f f

γ

γ −

∂∂
= = ∀ ∈

∂ ∂


 ,           (14) 

( )2
1,...,

0, , ,off
f

off
n m

J f f
n m n m

f f

∂
= ∀ ∈ ≠

∂ ∂


 . 

Since a , , ,Xn
n t in nLγ  and nf are all positive, thus the Hession matrix is a positive definite 

matrix. That is, the objective function of CP  is a convex function [28].                                   □ 
Following the Lemma 1, we can conclude that CP  is a convex optimization problem, thus 

its optimal solution can be characterized by the following proposition. 

Proposition 2: The optimal solution of CP  is ,

off

n
n t in n

n offn
n t in n

n

a L X
f F n

a L X

γ

γ
∗

∈

= ∀ ∈
∑


 . 

Proof: Since CP  is a convex optimization problem and the Slater conditions hold [28]. 
Therefore, the KKT conditions are both the sufficient and necessary conditions for the optimal 
solution of the problem CP  [25]. Defining the Lagrange function of the problem CP  as  

( ) ( ) ( ) ( ), ,
off

f n n
n

L J g hλ µ λ µ
∈

= + +∑f f f f


. 

Wherein, ( )1,...,
off

f f=f


 , ( ) ,n n offg f n= − ∀ ∈f  , ( )
off

n
n

h f F
∈

= −∑f


. In which, ( ) 0ng <f  

and ( )h 0<f  are derived from the inequality constraints C6 and C7, respectively. We let n
l  

and m  denote the Lagrange multipliers for C6 and C7 respectively, and , 0nλ µ ≥ . Therefore, 
the optimal solution must satisfy the following KKT conditions, 
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( ), ,
0

n n

n

n f f

L
f
λ µ

∗=

∂
=

∂
f ,                                          （a） 

( ) 0n ngλ ∗ =f ,                                                  （b） 

( ) 0hµ ∗ =f ,                                                    （c） 

( ) 0ng ∗ <f ,                                                      （d） 

( ) 0h ∗ ≤f .                                                       （e） 
Where (a) is the necessary condition for the Lagrange function to take extreme values, (b) 

and (c) are the complementary relaxation conditions, and (d) and (e) are the inequality 
constraints. From (b) and (d), we know that 0nλ = . Furthermore, based on the Lagrange 
function of the problem CP , we have 

( )
2

2

, ,

.

n
n n t in n

n
n n

n
n t in n

n

L f a L X
f f

a L X
f

λ µ γ
λ µ

γ
µ

∂
= − − +

∂

= − +
 

Then based on equation (a), the optimal solution for MU n is  
n

n t in n
n

a L X
f

γ
µ

∗ = . 

In which, µ  is determined by the complementary relaxation condition (c), and the optimal 
solution must satisfy the following condition 

off

n
n

f F∗

∈

=∑


. 

Therefore, we have  
2

off

n
n t in n

n
a L X Fµ γ

∈

 
=   
 
∑


. 

To sum up, we conclude that the solution of CP  is ,

off

n
n t in n

n offn
n t in n

n

a L X
f F n

a L X

γ

γ
∗

∈

= ∀ ∈
∑


 .   

 

3.3. CEP algorithm 

In this section, we discuss and solve the joint subchannel assignment and power control 
subproblem. As mentioned earlier, this problem is still NP-hard. This comes from the fact that, 
1) the subchannel assignment is a combinational problem, and 2) both the objective function 
and the constraint C5 are non-convex. Therefore, based on the alternation optimization, a low 
complexity heuristic algorithm is proposed herein. Specifically, the original problem JP  is 
further decomposed to two subproblems, i.e., the subchannel assignment, and the power 
allocation. At first, given the subchannel assignment, the transmission power of all MUs are 
optimized. Then, based on the result of power allocation, the subchannel assignments are 
updated. Finally, these two steps are alternatively performed until the termination conditions 
are met. The details are summarized as follows. 
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Step 1 (Initialization): Initialize a feasible subchannel assignment; 
Step 2 (Power Allocation): Given the subchannel assignment, we optimize the transmit 

power for all MUs. Specifically, we consider that the computing offloading MUs who 
accessed to the same subchannel have equal transmit power, and this is the same for the 
communication MUs. Then the equal transmit power for both offloading MUs and 
communication MUs are optimized by searching to minimize the offloading costs for 
offloading MUs under the transmission power constraints for the communication MUs. 

Step 3 (subchannel assignment): Given power allocation, subchannel assignment is 
updated. Specifically, each MU cyclically accesses to other subchannels and retains the 
subchannel assignment has the minimum system offloading cost. 

Step 4: Repeat the above steps until the terminal conditions are satisfied. 
 

3.3.1 Initialization 

Since all MUs in c
  have the transmission rate constraints, in order to obtain an initial 

feasible solution, it is necessary to initialize a feasible subchannel allocation and then perform 
power adjustment. Since the offloading cost for MU n in 

off
  is denoted by 

( )=
n
in

n n t e n
n

L
J a p

R
γ γ+                                                     (15) 

Given the power allocation, ( )n
in t e n

L pg g+  is constant, thus the offloading cost for MU n is 

inversely proportional to n
R . In addition, since its uplink transmission rate is 

, ,
2

0

log 1 n m k n
n

n

h p
R B

I N
 

= + + 
                                                   (16) 

From (15) and (16) and the given power allocation, we know that the largest , , 0/ ( )n m k nh I N+  
will bring the least offloading cost. Therefore, following criteria is adopted in the subchannel 
assignment, 

( )
, ,( ) arg max, 1 .

n m kn m,k EIRx m k n== ∀                                          (17) 
Wherein, 

, ,
, ,

,

EIR , ,n m k
n m k r

n,m,k
r r m

h
m k

h
∈ ≠

= ∀ ∈ ∈
∑


                                        (18) 

And , ,EIR n m k  denotes the effective interference ratio of MU n on subchannel k over cell m.  
As mentioned earlier, we first assign the subchannels to the communication MUs so that 

their transmission rates are satisfied, and then consider the computation offloading MUs. We 
summarize the details of the subchannel assignment initialization in the Algorithm 1 
presented below. 
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Algorithm 1. Subchannel assignment initialization 
1: Initialization: max , 0,n n cp p r n= = ∀ ∈ . 
Phase 1: Subchannel assignment initialization for communication MUs 
2: Initialize channelAlloc 1= , EC 0= , CoUsr 0= , UoCh 0= , compute ( )EIR , ,n m k , 

, ,cn m k∀ ∈ ∈ ∈    by (18). 
3: For cn∀ ∈ , implements the following steps:  
3.1：Compute the allocated subchannel ( ),m k  of MU n by (17). 

3.2：If ( ) ( )EC , EIR , ,m k n m k< , implements the following steps. 

    3.2.1：If ( )UoCh , 0m k ≠ , update ( )( )UoCCoUsr 1 0h, ,m k = ; 

    3.2.2：Update the state matrix ( ) ( )CoUsr , ;n m k=： . 

4: If ( )min CoUsr 0> , update channelAlloc 0= . 
5: If channelAlloc 1= , jump to step 3. Otherwise, go to step 6. 
6: For cn∀ ∈ , compute nR  by (5). 
7: For cn∀ ∈ , if minnR R< ，, the sub-channel assignment successes; otherwise, fails. 
Phase 2: Subchannel assignment initialization for computation offloading MUs 
8: Similar with phase 1. 
9: Output ( ) . 
 

Where ( )1 c
p p=p    and ( )1 c

r r=r    record the power allocation for communication 
MUs and computation offloading MUs, respectively. channelAlloc=1 indicates that the MU 
isn’t assigned any subchannel, otherwise MU has been assigned a subchannel. The EC keeps 
the EIR value of the currently accessed MU for each subchannel, CoUsr is a 2 c×  matrix 
who keeps the MUs’ assigned subchannels, while the first row records the index of the base 
station, and the second row records the subchannel. UoCh records the accessed MUs of each 
subchannel. 

 

3.3.2 Power allocation 
Based on the subchannel assignment, then the power allocation on each subchannel can be 
independently discussed. Thus, for subchannel k ∈ , the power allocation problem is 

( )

max

min

min

. . 0 , .

, .

k
n

k
n c

J

s t p p n

R R n

< ≤ ∈

≥ ∀ ∈








                                               (19) 

In which, =k k k
off c   , k

off  and k
c denote the computation offloading MUs and 

communication MUs on subchannel k, respectively. Obviously, (19) is a typical interference 
channel (IC) power control problem and it is non-convex. Therefore, we propose a suboptimal 
power control mechanism for this problem, i.e., the MUs with the same service type transmit 
with equal power. Following that, (19) is simplified as follows, 
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. . 0 .
0 .

, .

, .

, .
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n c c
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J J

s t p p
p p
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< ≤
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



                                                     (20) 

Where offp  and cp  are the transmit power of computation offloading MUs and 
communication MUs in subchannel k, respectively. Now, the power allocation problem (19) 
which has k  variables is simplified to (20) with only two decision variables, i.e., offp  and 

cp . Then we use power iteration to minimize the weighted sum of offloading cost for all 
offloading MUs in subchannel k. Specifically, given the step λ  and at each iteration, the 
offloading MUs adjust the transmit power by = +off offp p λ , then we calculate the weighted sum 
of offloading cost and the result is compared with the previous iteration. Finally, we keep the 
power allocation with less weighted sum of offloading cost. In the following, we first present 
two useful conclusions and then give the details of the algorithm. 

Lemma 2: Given the transmission power offp  for the computation offloading MUs, the 
minimum weighted sum of offloading cost for offloading MUs can be achieved at the point 
that the co-channel communication MUs transmit with the minimum power but their 
transmission rates are satisfied. 

Proof: From (4) and (5), and given the transmission power of the computation offloading 
MUs, we know that, less transmission power of the co-channel communication MUs, then the 
smaller co-channel interference they will bring to the offloading MUs, and thus the offloading 
MUs can obtain larger transmission rate. From (12), we know that in turn, it will decrease the 
weighted sum of offloading cost for offloading MUs.                                                        □ 

Proposition 3: Given the transmit power 
off

p  for the computation offloading MUs, the 
lower bound of the transmission power for co-channel communication MUs to satisfy their 
transmission rate constraints is  

( ){ }max , k
c c cp p i i= ∀ ∈ .                                                  (21) 

Where ( )c offp i pα β= + , ( ), , , , ,r,
off c

j j
s d k i j k off v ks v

h h p hα γ γ
∈ ∈

= −∑ ∑ 
, 0Nβ γ= , and 

min2 1,R B k
ciγ = − ∀ ∈ . 

Proof: Define the transmission power of communication MU i as ( ) , k
c cp i i∀ ∈ . To ensure 

the feasibility of the problem, the rate constraint of communication MUs must be satisfied, that 
is, 

 ( )
( )

, ,
2 min

, , ,r, 0

log +1 ,
k
off k

c

c i j k k
cj j

c s d k v v ks
v

p i h
B R i

p i h p h N
∈

∈

 
 

≥ ∀ ∈ + + 
 
∑ ∑



 .            (22) 

Let the transmission power of computation offloading MUs be offp , then the minimum 
transmission power will be obtained if the equation (22) takes equal sign. Following that, after 
some simplifications, we have ( )cp i  as follows, 

( ) , k
c off cp i p iα β= + ∀ ∈ .                                                 (23) 
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The SINR of communication MUs is  

( ) ( )
, ,

, , ,r, 0

( )
,

k k
coff

c i j k k
c cj j

c s d k off v ks v

p i h
S i i

p i h p h N
∈ ∈

= ∀ ∈
+ +∑ ∑ 

  

And its first derivative with respect to ( )c
p i  is 

( )
( )

( )
( )( )

, , ,r, 0

2

, , ,r, 0

k
c

k k
coff

j
i j k off v kvc

j jc
c s d k off v ks v

h p h NS i
p i p i h p h N

∈

∈ ∈

+∂
=

∂
+ +

∑

∑ ∑


 

 

Since ( )c off
p i p, 0> , the first derivative of ( )cS i  is positive, that is, c

S i( )  is monotonously 

increasing for ( )c
p i 0> . In addition, the communication rate increases as the SINR increase, 

and the communication rate increases as the power increase. Therefore, when c
p  takes the 

maximum power of co-channel communication MUs, all communication MUs exactly meet 
the minimum rate requirement. To sum up, we have the conclusion.    □ 

With Lemma 2 and Proposition 3, and given the transmission power 
off

p  of computation 
offloading MUs, the minimum weighted sum of offloading cost is achieved when the 
communication MUs set their transmit power by (21). Then the offloading MUs adjust the 
transmission power by off offp p λ= + , and the power which has the smallest weighted sum of 

offloading cost is reserved. The terminal condition is 1)
off

p
max

>p ; or 2) c
p p

max
>  . Condition 

1) indicates that the power iteration completes, and condition 2) indicates that the rate 
constraint can not be satisfied. The algorithm is ended when all subchannels have been 
traversed. In summary, we have the corresponding Algorithm 2. 

 
Algorithm 2: equal power allocation for co-channel MUs with the same service type  
1: Set step size λ , Jnow

0= , and initialize  ,  , and subJ . 
2: For k∀ ∈ , implements the following steps: 

2.1: Initialize =offp λ , and compute the MUs k assigned the k subchannel. 
2.2: If maxpoffp ≤ , compute by (21); otherwise, jump to step 3. 

2.3: If maxcp p≤ ，implement the following steps; otherwise, jump to step 3. 

2.3.1: compute the user utility sum nowJ  of k
  by (13). 

           2.3.2: If now kJ J< , update now
sub
kJ J= , , k

n off offp n= ∀ ∈  , , k
n c cp n= ∀ ∈  . 

2.4: Update off offp p λ= + . 

3: Compute the system utility 1

K sub
kk

J J
=

= ∑ . 

4: Output ( ), , J  . 

 
Where the matrix subJ  stores the weighted sum of offloading cost for each subchannel. 

When this algorithm is performed for the first time, the output of Algorithm 1 is used as the 
input of this algorithm. The user power is initialized to max , k

n cp p n= ∈ , , k
n offp nλ= ∈ . 
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3.3.3 Subchannel assignment 
Given the power allocation, the subchannel assignment problem becomes 

( ) ( )=

. . 1 3 .
off

n
in

n t e n
n n

L
J a p

R

s t C C C5

γ γ
∈

+

−

∑
、

C

                                         (24) 

Since this is a combinatorial optimization problem, the size of the solution space is n2  and 
n M K N= × × . Obviously, it is too complexity to directly search the optimal solution. 
Therefore, a low-complexity heuristic algorithm is proposed to obtain a suboptimal solution, 
that is, only one subchannel allocation is adjusted per cycle. In the system, subchannels can be 
divided into occupied subchannels and idle subchannels. If the occupied subchannels are 
involved, the MU needs to exchange channels with the MU who is occupying this channel; 
otherwise, the MU switch to the subchannel directly, and the channel can be switched. The 
adjustment is presented below, i.e., Exchange and switch channels operation. 

 
Exchange and switch operation 

( )( )exchange , ,n m k  

For ,i j∈ ∈   

( ){ }\ ,nx i j←   
End 
For r∈  

( ){ }\ ,rx m k←   
End 
Set ( ) ( ){ }, , ,n rx m k x i j← ∪   
Output:   
 

( )( )switch , ,n m k  

For ,i j∈ ∈   

( ){ }\ ,nx i j←   
End 
Set ( ){ },nx m k← ∪   
Output:   

 
Based on the exchange and switch operation, the subchannel assignment process is 

summarized as follows: The MU cyclically accesses the other subchannels, according to (13), 
the weighted sum of offloading cost is calculated and then keep the subchannel assignment has 
the minimum weighted sum of offloading cost. The procedure will continue until all MUs 
have been traversed. The Algorithm 3 presented below summarizes the details. 
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Algorithm 3: Subchannel assignment 
1: Initialize now 0J = ,  ,  , and J . 
2: For n∀ ∈ , implements the following steps: 

2.1: For ,m k∀ ∈ ∀ ∈  , if ( ),m k is not assigned, ( )( )switch , ,n m k ; otherwise, 

( )( )exchange , ,n m k , and 0  records the temporary subchannel assignment. 
2.2: Compute the rate of communication MUs by (5), if C5 is satisfied: 

              2.2.1: Compute the system utility Jnow  by (13). 

              2.2.2: If nowJ J> , update 0=  , nowJ J= . 
3: Output ( ), , J  . 

 
Herein, the input of Algorithm 3 is initialized by the output of Algorithm 2. In addition, the 

initial value of J is based on (13).  
Algorithm 4 summarizes the joint subchannel assignment and power allocation. Since the 

co-channel MUs who asking for the same service have equal transmission power, thus the 
Algorithm 4 is named the co-channel Equal Power Allocation (CEP), and the details are 
illustrated as below. 

 
Algorithm 4：CEP 
1: Initialize 0t = ; 
2: Perform Algorithm 1; 
3: Perform Algorithm 2; 
4: Perform Algorithm 3; 
5: Update 1t t= + ; 
6: If t T≤ , jump to step3; otherwise, jump to step 7. 

7: Output ( )( ), , , , ,J      . 

 
The complexity of algorithm CEP is characterized by the following proposition. 
Proposition 4: The computational complexity of CEP is upper bounded by  

( )max+ cKMN p λ  . 
Proof: The computational complexity of CEP is mainly depended on the power allocation 

and subchannel assignment. As algorithm 2, the computing intensive operations are power 
iteration and sort operation of communication MUs, which has the complexity of  max( / )p λ  
and ( )c  , respectively. Therefore, the complexity of the power allocation is upper bounded 
by max( / )c p λ  . For Algorithm 3, the computational complexity mainly comes from the 
subchannel adjustment with the complexity of ( )NMK . To sum up, the computational 
complexity of the algorithm CEP is max( + / )cKMN p λ  .                                   

 

3.4 Enhanced CEP algorithm 
One may note that, CEP algorithm ignores the differences among the MUs and equal 
transmission power is used by the MUs who shared the same channel over different cells. To 
improve the performance of the CEP, we propose the Enhanced CEP (ECEP). The core idea of 
the ECEP is that, based on the CEP, we further performs power iteration for each MU and 
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keeps the power allocation with the minimum weighted sum offloading cost as the final 
solution. Specifically, given a step λ , the power iteration for each MU is ended if one of the 
following conditions is satisfied, 1) the system weighted sum offloading cost of the current 
iteration is larger than the previous iteration; 2) the constraint C4 is violated; 3) if all MUs 
have been traversed. The Algorithm 5 presented below summarizes the details.  

 
Algorithm 5: ECEP  
1: Initialize the step size λ , J , now 0J = , tmpP =   and  ; 
2: For n∀ ∈ , implements the following steps:    

2.1: For d∀ ∈ , implements the following steps:    
         2.1.1: If max0 tmp

nP p< ≤ , Go to the next step; otherwise, jump to step 3; 
         2.1.2: Compute the rate of communication MUs by (5), if C5 is satisfied, go to the next 

step; otherwise, jump to step 3. 
         2.1.3: Compute the system utility nowJ  by (13).  

         2.1.4: If nowJ J< , update tmp
n nP P= , nowJ J= , tmp tmp

n nP P dλ= + ; 
3: Output ( ), , J  . 

 
In which, tmpP  is used to temporarily record the power allocation result.  and   record 

the results of the power allocation and subchannel assignment, respectively. The initial point 
of this algorithm is the output of Algorithm 2, and which promises the feasibility of the 
algorithm at the beginning. In addition,   indicates the iteration direction. To sum up, we 
have the ECEP algorithm presented below, i.e., the Algorithm 6. 

 
Algorithm 6: ECEP 
1: Initialize 0t = ; 
2: Perform Algorithm 1; 
3: Perform Algorithm 5; 
4: Perform Algorithm 3; 
5: Update 1t t= + ; 
6: If t T≤ , jump to step 4; otherwise, jump to step 8; 

7: Output ( )( ), , , , ,J      . 

 
Similarly, we have the complexity conclusion for algorithm ECEP as follows. 
Proposition 5: The computational complexity of the ECEP is upper bounded by 

( )max+NKM Np λ . 
Proof: Due to space limitation, the details of the proof are omitted herein. However, this 

conclusion can be easily proved by the same way as that used for the Proposition 4.       

4. Numerical results 
In this section, we evaluate the performance of the proposed algorithms, i.e., the CEP and 
ECEP by numerical simulations and the results are presented below. The scenario parameters 
used in the simulation are shown in Table 1 [8, 11], that is, we have 7 cells, the coverage of 
each cell is 50m and the MUs are uniformly distributed over multiple cells. The path-loss is 
characterized by [ ] [ ]10dB 140.7 36.7 log kmL d= +  and the small-scale fading is Rayleigh fading. 
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Without any further statements, the results shown below are averaged over 1000 independent 
simulations.  

 
Table 1. Simulation parameters [8,11] 

Parameters Value 
Number of cells  7 

Coverage of the cell 50m 
Number of subchannels  10 
Subchannel bandwidth 5KHz 

Noise Power -110dBm/Hz 
Maximal transmit power at the MUs 200mW 

Average input data size of offloading MUs’ tasks 2000Kbits 
Average complexity of offloading MUs’ tasks 1000Megacycles/bit 

Available CPU frequency at MEC server 20GHz 
Rate requirements for communication MUs 100Kbps 

 
At first, we study the weighted sum offloading cost and the average per MU offloading cost 

of CEP and ECEP against different number of computation offloading MUs, and the results 
are shown in Fig. 2 and Fig. 3, respectively. In which, the number of offloading MUs is 
varying from 7 to 56. From Fig. 2, we note that with the increase of the number of computation 
offloading MUs, as expected, the total offloading cost of both CEP and ECEP increases. We 
can explain this phenomenon as follows. On the one hand, the system total offloading cost is 
defined as the weighted sum of delay and energy consumption for all computation offloading 
MUs. Thus, it will increase as the number of MUs increase and obviously, this is consistent 
with the intuition. On the other hand, the more MUs in the system, the competition between 
MUs becomes more serious, and which results the increase of average per MU offloading cost, 
as shown in Fig. 3. In addition, the result in Fig. 2 confirms our analysis before that the 
offloading performance of ECEP is better than CEP. 
 

7 14 21 28 35 42 49 560

2

4

6

8

10

12

14

16

18

20

Number of computation offloading MUs Noff

W
ei

gh
t s

um
 o

f o
ffl

oa
di

ng
 c

os
t

 

 

CEP
ECEP

 
Fig. 2. Sum offloading cost versus the numbers 

of computing offloading MUs. 
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Fig. 3. Average per MU offloading cost versus 

the numbers of computing offloading MUs. 
 

From Fig. 3, we note that the average per MU offloading cost increases linearly with the 
increase of the number of computation offloading MUs. This due to the fact that, as more 
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computing MUs present in the system, the competition among MUs becomes more serious for 
limited computing resource at the MEC server and the larger average co-channel interference 
for each MU, which in turn increases the transmission delay and energy consumption, thus the 
average per MU offloading cost increases. We also find that the gap of the offloading cost 
between these two algorithms increases as the number of offloading MUs becomes larger. 
This performance gain comes from the fact that ECEP has more degree of freedoms in power 
adjustment. 

Then, we analyze how does the system weighted sum of offloading cost is varying with the 
task complexity of the offloading MUs, and the result is presented in Fig. 4. Herein, the 
parameters used in the simulation are the same at that used in Fig. 2, except that right now, we 
fix the number of communication MUs as 6 and the number of computing offloading MUs is 
18. The task complexity takes value from the set [0.5 1 2 4 8 16]G cycles per bit. From Fig. 4, 
one can observe that, the weighted sum of offloading cost of the system slowly increases with 
the task complexity. That is, these two algorithms are both not sensitive with the task 
complexity. In fact, the offloading cost now is mainly determined by the computing resource 
allocation, thus the tendency of these curves can be concluded from Proposition 2.  

In Fig. 5, the average system delay and energy consumption under different delay weights 
are evaluated. The parameters used in the simulation is the same as that used in Fig. 4. While 
the delay weight is varying from 0.1 to 0.9. One can observe that, as expected, the average 
system delay decreases and the average system energy consumption increases with the 
increase of delay weight. Obviously, the increase of weight for delay means that the 
contribution of delay in the system offloading cost becomes larger, thus the delay will be 
reduced when the offloading cost is minimized. In addition, one can observe that the reduction 
of average user delay is at the cost of more energy consumption. 
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Fig. 5. The delay and energy 

consumption with the delay weights 

 
At last, we study how does the user offloading cost performance is affected by the user 

weights, and the result is shown in Fig. 5. Herein, the weight of a particular MU, i.e., the MU 
1, varies over [1/125 1/25 1 5 25 125], the weights of the other MUs are all equal to 1. The 
other parameters used the simulation are the same as that used in Fig. 4. One can note that, as 
the weight of MU 1 increases, its offloading cost of both algorithms decrease. This 
phenomenon is consistent with intuition and analysis as that, increasing the weight of MU 1, 
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the contribution of MU 1 in the system offloading cost becomes larger, then in order to 
minimize the system offloading cost, we have to significant reduce its offloading cost. In 
addition, we also note that the curve of ECEP is steeper than CEP. This comes from the fact 
that for CEP, the power adjustment of each MU should consider the co-channel MUs’ 
offloading costs due to the equal power allocation rule. This is not the case for ECEP where 
the power of each MU is independently adjusted. Therefore, when the user’s weight is small, 
the user utility of ECEP is bigger than CEP and vice versa. 
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Fig. 6. User offloading cost with the user weights. 

5. Conclusion 
In this paper, the joint resource allocation for ultra-dense MEC network has been discussed. In 
particular, we study a scenario that some MUs ask for computation offloading service while 
the others demand communication service. We formulate the problem as a joint channel 
assignment, power control and computational resource allocation to minimize the offloading 
cost of computing offloading MUs, with the precondition that the transmission rate of 
communication MUs are satisfied. Since the considered problem is a mixed-integer non-linear 
program (MINLP) which is NP-hard, then two heuristic algorithms are proposed to obtain the 
suboptimal solutions, i.e., CEP and ECEP. Our simulation results confirm that the ECEP 
outperforms CEP in offloading cost performance. Future interests are about the scenario with 
multiple MEC servers and with partial offloading tasks on the users. 
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